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Abstract

MicroRNAs (miRNAs) are a class of non-coding RNAs that
play key roles in various biological processes. Numerous
studies have indicated that miRNAs are closely associated
with the occurrence, development, and diagnosis of human
diseases. Traditional biological experiments are costly and
time-consuming. Therefore, effective computational models
are increasingly popular for predicting associations between
miRNAs and diseases, which can significantly facilitate the
diagnosis and prevention of human diseases. However, ex-
isting computational methods often overlook the pivotal in-
termediary role of genes, limiting their focus to miRNAs
and diseases, and the issue of data sparsity remains. To ad-
dress these limitations, we plan to employ a multi-task learn-
ing framework that integrates multi-dimensional information
such as miRNAs, diseases, and genes for feature extraction
and fusion, enhancing the capability to identify miRNAdis-
ease associations for downstream tasks of miRNA-disease
association prediction. To evaluate the performance of our
model, we compare it with competitive baseline models on
a real-world dataset of experimentally supported miRNAdis-
ease associations.

Introduction
MicroRNAs (miRNAs) are a class of non-coding RNA
molecules that play a key role in gene regulation in animal
species. Discovered more than two decades ago, these small
but powerful entities have been implicated in a variety of
biological processes and a variety of serious diseases, in-
cluding cancer and, most recently, the COVID-19 pandemic.
Computational methods to study the relationship between
miRNAs and diseases are mainly based on network or ma-
chine learning, and have made great progress in predicting
potential miRNA-disease associations. However, they face
challenges due to the sparsity of known associations and the
limitations of relying solely on disease or miRNA similarity
for model predictions.

To address these challenges, this paper introduces a novel
multi-task learning framework that exploits the relationships
between miRNA-disease pairs to construct comprehensive
disease-gene networks. The contributions of this study are
manifold. We propose a multi-task learning model for pre-
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dicting potential miRNA-disease associations that is innova-
tive in architecture and efficient in application. This model
integrates miRNAs, genes, and diseases into a multi-task
learning framework, providing a more nuanced understand-
ing of their interrelationships. Empirical validation on estab-
lished datasets confirms that our model outperforms existing
state-of-the-art methods, highlighting its potential to accu-
rately predict miRNA-disease relationships and its utility in
advancing the field of bioinformatics.

Related Work
Our research intersects with two primary areas of research
in predicting miRNA-disease associations: network-based
methods and machine learning-based methods.

Network-based Methods
Network-based approaches largely depend on the compu-
tation of various similarities, operating under the hypothe-
sis that functionally similar miRNAs are likely to be asso-
ciated with similar diseases, and vice versa. This hypoth-
esis was initially put forward by Lu(Lu et al. 2008), lay-
ing the theoretical groundwork for studying miRNA-disease
associations. Chen (Chen, Liu, and Yan 2012) introduced
a global network similarity measure and employed random
walks with restart to identify miRNA-disease associations,
although this method has limitations when direct connec-
tions between miRNAs and diseases are absent. Xuan (Xuan
et al. 2015) developed a miRNA network based on func-
tional similarity and addressed the shortcomings of previous
methods that neglected local topology information.

Chen (Chen et al. 2016) proposed the WBSMDA model,
integrating disease and miRNA similarities to predict as-
sociations for diseases without known miRNAs. Li (Li
et al. 2018) introduced a label propagation model with
linear neighborhood similarity, transforming disease and
miRNA similarity into a linear domain. Wang (Wang et al.
2021) developed the HFHLMDA model, employing high-
dimensional features and hypergraph learning.

In advancing network-based methods, Alaimo (Alaimo,
Giugno, and Pulvirenti 2014) proposed the ncPred method
based on a triple network, and Yu (Yu et al. 2020) intro-
duced a threelayer heterogeneous network combined with
an unbalanced random walk. However, these methods tend



to overlook the rich structural information within the net-
work.

Machine Learning-based Methods

Machine learning has also been extensively applied to pre-
dict miRNA-disease associations. Xu (Xu et al. 2011) used
a support vector machine (SVM) to rank prostate cancer
miRNAs. Chen (Chen et al. 2015) proposed a model for
predicting potential miRNA-disease combinations and in-
ferring their types. Chen (Chen et al. 2018) developed the
RFMDA model, a random forest-based approach for predict-
ing unknown associations. Liu (Liu et al. 2021) developed
the SMALF framework, integrating network node features
with XGBoost for prediction.

Recent studies have explored graph representation learn-
ing to capture high-order relationships. Li (Li et al. 2020)
proposed the NIMCGCN model, and inspired by the Graph-
SAGE algorithm, and Li (Li et al. 2021) developed the
GAEMDA model. Yan (Yan et al. 2022) proposed the
PDMDA approach, utilizing GNNs to extract disease feature
representations, while Lou (Lou et al. 2022) presented the
MINIMDA method, learning embeddings from multimodal
networks integrating multiple biological information.

Despite these advancements, most models do not fully
address the sparsity of identified miRNA-disease relation-
ships, which can lead to inaccuracies. To overcome this, we
propose a multi-task learning framework, integrating mul-
tidimensional information such as miRNAs, diseases, and
genes for feature extraction and fusion, aimed at effectively
predicting potential miRNA-disease relationships.

Materials and Methods
Our model consists of two sub-networks, miRNA-disease
and gene-disease, and the Gaussian similarity method is
used to construct the sub-networks.

Human miRNA-disease associations

In our study, the miRNA-disease association is based
on HMDD v2.0(Li et al. 2014), an authoritative dataset
containing experimentally validated associations between
nd(383) diseases and nm(495) miRNAs. In this dataset,
5430 miRNA-disease associations have been confirmed. In
the experiment, we used a matrix MD with nd columns and
nm rows to represent the relationship between the identified
disease and the miRNA. If the corresponding disease is as-
sociated with the corresponding miRNA, then the element
value in the matrix is 1, otherwise it is 0 (indicating that the
relationship is unknown). The matrix MD is represented as
follows:

MD(i, j) =

{
1, if mi is associated with dj
0, otherwise (1)

where mi represents the i-th miRNA (i-th row in MD) and
dj represents the j-th disease (j-th column in MD).

Human genes-disease associations
In our study, the original gene-disease relationship was de-
rived from DisGeNet (Piñero et al. 2015). The same disease
and related genes as the corresponding miRNA-disease sub-
network are selected to form the gene-disease sub-network,
which contains associations between 9286 nd (383) disease
and ng (4395) genes. We create a matrix GD with ng rows
and nd columns. If the disease is related to a gene, the cor-
responding input value is 1, otherwise it is 0. Similarly,
9286 known disease-related associations are taken as posi-
tive samples for the gene-disease subnetwork, and then neg-
ative samples were randomly selected from entries with a
median GD of 0 0. The matrix GD is represented as follows:

GD(i, j) =

{
1, if gi is associated with dj
0, otherwise (2)

where gi represents the i-th gene (i-th row in GD), and dj
represents the j-th disease (j-th column in GD).

Gaussian interaction profile kernel similarity for
miRNAs and diseases in miRNA–disease
subnetwork
Since similar diseases are often associated with function-
ally similar miRNAs (Wang et al. 2010), we use the Gaus-
sian interaction nuclear similarity to simulate the similarity
between miRNAs and diseases in the miRNA-disease sub-
network, which is calculated by the information of known
mirna-disease associations. The binary vector Ym is used
to represent the rows in the matrix MD, i.e., the associa-
tion between a particular miRNA and various diseases in the
miRNA-disease subnetwork. The specific definitions are as
follows:

KGIP,m (mi,mj) = exp
(
−rm

∥∥Ymi − Ymj

∥∥2) (3)

where rm represents the bandwidth of the kernel, which can
be calculated by:

rm = r′m/

(
1

nm

nm∑
i=1

∥Ymi
∥2
)

(4)

where nm is the total number of miRNAs and r′m is the nor-
malization constant, which is set to 1.

Similarly, we can obtain the Gaussian interaction profile
kernel similarity of the diseases according to the following
formula:

KGIP,d (di, dj) = exp
(
−rd

∥∥Ydi − Ydj

∥∥2) (5)

rd = r′d/

(
1

nd

nd∑
i=1

∥Ydi∥2
)

(6)

where Yd is the binary column vector of the matrix MD,
which represents the association between the mirna and each



Figure 1: The overall framework of our model.

disease, and nd is the total number of diseases, and the nor-
malization constant r′d is set to 1 following previous studies
(Van Laarhoven, Nabuurs, and Marchiori 2011).

We used the Gaussian similarities obtained for disease and
miRNA as initial node features for disease and miRNA in
the miRNA-disease subnetwork, respectively.

Gaussian interaction profile kernel similarity for
genes and diseases in the gene–disease sub-network
Previous studies have shown that there is a higher likelihood
of physical interactions between gene products of genes as-
sociated with similar diseases (Goh et al. 2007). Therefore,
we also use the Gaussian interaction profile kernel similar-
ity method to calculate the similarity between genes and be-
tween diseases based on the gene-disease subnetwork GD.
These two similarities are used as primitive features of dis-
ease and gene nodes in the gene-disease subnetwork, respec-
tively.

Model framework
Our model consists of two sub-networks (i.e., miRNA-
disease network and gene-disease network), a graph convo-
lutional network encoder, and a bilinear decoder, as shown
in Figure 1. Specifically, the entire model can be described
in the following six steps:

Step I Following previous studies (Li et al. 2022), we ran-
domly select miRNA–disease pairs from all the unknown
miRNA–disease associations as negative samples, and we

mine the associated gene–disease pairs in terms of dis-
eases in miRNA–disease sub-network from the DisGeNet
database. Taking the miRNA–disease sub-network as an ex-
ample, the node feature of the i-th miRNA, M(i) and the
node feature of i-th disease, D1(i), can be expressed as fol-
lows:

M(i) = (x1
i,1, x

1
i,2, · · · , x1

i,nm
) (7)

D1(i) = (z1i,1, z
1
i,2, · · · , z1i,nd

) (8)
where x1i,j represents the Gaussian similarity between
miRNA mi and miRNA mj in the miRNA–disease sub-
network, zi,j represents the Gaussian similarity between dis-
ease di and disease dj.

Step II We designed a projection module to map the fea-
tures of disease and miRNA nodes into a unified 1024-
dimensional space through a transformation matrix. The
process of the projection module is as follows(take the
miRNA–disease sub-network as an example):

Hm(i) = M(i) ·Wm (9)

Hd1(i) = D1(i) ·Wd (10)
where Hm(i) ∈ R1024 and Hd1(i) ∈ R1024 are projec-
tion features of miRNA node mi and disease node di in
miRNA–disease network. The learnable weight matrices
Wm ∈ R495×1024 and Wd ∈ R383×1024 are automatically
generated by calling the torch package, according to the size
requirements of our designed space vector.



Step III We connect the two sub-networks by cross-
compression unit modules and extract auxiliary information
from both sub-networks by analyzing the MD and GD ma-
trices.

Haux−m(i) = MD ·Waux−m (11)

Haux−d1(i) = GDT ·Waux−d1 (12)
where Haux−m ∈ R383×1024 and Haux−d1 ∈ R383×1024

respectively represent the miRNA and disease nodes in
the miRNA-disease network, Waux−m ∈ R383×1024 and
Waux−d1 ∈ R383×1024, are the weight matrices.

Ultimately, we concatenate the initial features of the
nodes with the auxiliary features to form the new features
of the nodes, which can be summarized as follows(take the
miRNA–disease network as an example):

HM = cat(Hm ·Haux−m) (13)

HD1 = cat(Hd1 ·Haux−d1) (14)
where HM ∈ R495×2048 and HD1 ∈ R383×2048 repre-
sent the integrated feature representations of nodes in the
miRNA–disease network.

Step IV We use the Graph Convolutional Network (GCN)
encoder to obtain the representation of the nodes of the two
sub-networks based on the information of the direct neigh-
bors in the two sub-networks. Here, we have chosen the
Chebyshev filter-based method (ChebConv) as the encoder
in view of its great expressive power(Defferrard, Bresson,
and Vandergheynst 2016).

Step V We use a linear decoder to reconstruct the connec-
tion of the heterogeneous graphs in the two sub-networks.

ŷmd = Sigmoid(Fm(i))
TQ1Fd1(j) (15)

where ŷmd represents the predicted association proba-
bility of miRNA node m(i) and disease node d(j) in
the miRNA–disease sub-network, Fm and Fd1 represent
the final miRNA and disease node embedding represen-
tations obtained through the encoder respectively in the
miRNA–disease sub-network, and Q1 denotes a trainable
parameter matrix, which is 64× 64 dimensions.

Step VI In the following, we will elaborate the six steps in
great details. We choose the cross-entropy loss function to
measure the error between the true value y and the predicted
probability value ŷ for each association in the subnetwork.

LOSSm−d = −
∑

yij log ŷij+(1−yij) log(1−ŷij) (16)

where LOSSm−d represents the functional loss in the
miRNA-disease sub-network, ŷij represents the predicted
link probability between disease and miRNA nodes, while
yij represents the true label of the link.

Loss = LOSSg−d + LOSSm−d (17)
Then, we use the Loss function in Eq.17 to train the whole

model via the back propagation algorithm with an end-to-
end manner.

Experiments
In this section, we show the comparison results under differ-
ent experimental conditions and different models on HMDD
v2.0 dataset to demonstrate the effectiveness of our model.

Implementation settings
Our model is implemented in the pytorch(v1.10.2) frame-
work based on the DGL(v0.6.1) platform (Wang 2019).Dur-
ing the model training process, the model parameters are
randomly initialized and optimized with the Adam opti-
mizer. We use the grid search method to find the optimal hy-
perparameters and the learning rate is set to 0.0001 and the
weight decay is set to 3× 10−4. We chose different dropout
rates during training, from 0.1 to 0.9. The entire model was
trained for 800 cycles, and the results of the test set were
output every 10 cycles. We used a 5-fold cross-validation
method to evaluate the performance of the model.

Evaluation metrics
We choose Precision (Prec.), Accuracy (Acc.), Recall, F1
score, AUC, and precision-recall (P–R) curve as the evalu-
ation criteria. The abscissa of the P–R curve represents the
recall of the model and the ordinate represents the precision.
The larger area in the P–R curve represents better model per-
formance. Table 1 describes the values of various evaluation
indicators of our model using 5-fold cross-validation in de-
tail.

Test set Precision Accuracy Recall F1-score

1 0.8730 0.8656 0.8831 0.8670
2 0.8762 0.8743 0.8745 0.8733
3 0.8520 0.8780 0.8537 0.8751
4 0.8903 0.8660 0.8756 0.8697
5 0.8899 0.8600 0.8630 0.8598

Mean 87.63% 86.88% 87.74% 86.93%
±0.0046 ±0.0065 ±0.0104 ±0.0054

Table 1: 5-fold cross-validation results performed.

Our results show that our model achieves 86.88%,
87.63%, 87.74%, and 86.93% in terms of average accuracy,
precision, recall, and F1 score, respectively. In addition, Fig-
ure 2 shows the AUC values of the ROC curve of our model
under 5-fold cross-validation of 94.03%, 94.67%, 93.75%,
94.62%, and 93.79%, respectively, with a mean of 94.17%
± 0.0040. At the same time, Figure 3 shows the AUC values
of the P–R curves of the model under 5-fold cross-validation
of 93.27%, 93.53%, 94.55%, 94.10%, and 93.31%, respec-
tively, with a mean value of 93.75% ± 0.0050. To further
demonstrate the value of adding gene-disease information
to our model, we conducted an experiment in which the
miRNA-disease network was kept unchanged while ran-
domly disrupting the gene-disease network to break the orig-
inal association between genes and disease. The verification
results are shown in Table 2. The two networks may still
exhibit similar structures within the vector space of disease
nodes in the initial non-specific task of multi-task learning



Figure 2: ROC curves of our model in 5-fold cross valida-
tion.

Figure 3: P–R curves of our model in 5-fold cross validation.

(Long et al. 2017). Therefore, we verified that the perturbed
gene-disease network can still provide important auxiliary
information to the miRNA-disease network.

Comparison with other latest methods
We use the AUC values based on the ROC curve to com-
pare the performance of our model with the other state-
of-the-art models in a 5-fold cross-validation manner. We
have selected the latest and most representative models
in this field, which are ”Predicting microRNA–disease as-
sociations using label propagation based on linear neigh-
borhood similarity” (LPLNS) (Li et al. 2018), ”Tree-layer
heterogeneous network combined with unbalanced random
walk for miRNA–disease association prediction” (TCR-
WMDA)(Yu et al. 2020), ”A graph auto-encoder model for
miRNA–disease associations prediction” (GAEMDA) (Li
et al. 2021), ”Multi-view multichannel attention graph con-
volutional network for miRN–disease association predic-
tion” (MMGCN) (Tang et al. 2021) and ”Hierarchical graph
attention network for miRNA–disease association predic-
tion” (HGANMDA) (Li et al. 2022). In order to be a fair
experiment, we conducted a 5-fold cross-validation experi-
ment on all five comparison algorithms on the HMDD v2.0
dataset. Figure 4 illustrates the ROC curves of our model
compared to the other five algorithms.

Compared to other models, our model fully takes into ac-
count the relatively sparse relationships between miRNAs
and diseases on the database and utilizes multi-task learning

Test set Precision Accuracy Recall F1-score AUC

1 0.8561 0.8487 0.8249 0.8350 0.9275
2 0.8552 0.8565 0.8377 0.8565 0.9362
3 0.8496 0.8620 0.8528 0.8512 0.9265
4 0.8639 0.8638 0.8765 0.8562 0.9340
5 0.8427 0.8500 0.8379 0.8403 0.9284

Mean 84.81% 85.62% 84.60% 84.58% 93.05%
±0.0074 ±0.0061 ±0.0176 ±0.0076 ±0.0039

Table 2: 5-fold cross-validation performed (random shuffle
gene–disease associations).

Figure 4: Comparison of ROC curves in 5-fold cross valida-
tion based on HMDD v2.0.

to effectively explore the sparse relationships. Moreover, our
model uses the information of gene–disease network to as-
sist the prediction of miRNA–disease improving the overall
performance of the model. Therefore, our model achieves
excellent results.

Conclusion
A variety of malignant diseases in humans are formed by
miRNAs regulating gene expression, and the abnormal ex-
pression of miRNAs is a key factor in human diseases.
Therefore, accurately predicting the relationship between
diseases and miRNAs can promote the development of hu-
man health. In this paper, we propose a multitasking learn-
ing model for predicting potential miRNA-disease associ-
ations, which is an end-to-end trainable graph neural net-
work model using GCN-based autoencoders and decoders.
We select the same disease and related genes from Dis-
GeNet as the corresponding miRNA-disease subnetwork to
construct a gene-disease subnetwork to assist in the pre-
diction of miRNA-disease relationships. Compared with the
five latest classical benchmark models, our proposed model
achieves a higher AUC, which verifies the accuracy and re-
liability of our model in the prediction process.
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